Piezoresistive Cement-based Materials for Strain Sensing

نویسنده

  • D. D. L. CHUNG
چکیده

Cement-based materials that exhibit piezoresistivity with sufficient magnitude and reversibility contain electrically conductive fibers. The phenomenon allows the materials to sense their own strain. The fibers are preferably discontinuous. Carbon fibers (15mm diameter) are most effective. Steel fibers (8 mm diameter) are less effective. Carbon filaments (0.1 mm diameter) are ineffective. The piezoresistive behavior, mechanism and materials are reviewed, including cement-based materials with continuous and discontinuous fibers.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Monitoring Strain in Engineered Cementitious Composites Using Wireless Sensors

The emergence of new structural materials opens exciting venues for improving the strength and durability of civil structures. Engineered Cementitious Composites (ECC) are a special class of fiber reinforced cementitious composite (FRCC) that combine short polymer fibers with a cement matrix to produce a material, which undergoes strain-induced hardening and is ultra-ductile when loaded in tens...

متن کامل

Carbon Nanotube Based Self-sensing Concrete for Pavement Structural Health Monitoring

This research project developed self-sensing carbon-nanotube (CNT)/cement composites. The piezoresitive property of carbon nanotubes enables the composite to detect the stress/stain inside the pavement. Meanwhile, CNTs can also work as the reinforcement elements to improve the strength and toughness of the concrete pavement. Experimental results show that the electrical resistance of the compos...

متن کامل

Conductivity-based strain monitoring and damage characterization of fiber reinforced cementitious structural components

In recent years, a new class of cementitious composite has been proposed for the design and construction of durable civil structures. Termed engineered cementitious composites (ECC), ECC utilizes a low volume fraction of short fibers (polymer, steel, carbon) within a cementitious matrix resulting in a composite that strain hardens when loaded in tension. By refining the mechanical properties of...

متن کامل

Strain and Cracking Surveillance in Engineered Cementitious Composites by Piezoresistive Properties

Engineered Cementitious Composites (ECCs) are novel cement-based ultraductile materials which is crack resistant and undergoes strain hardening when loaded in tension. In particular, the material is piezoresistive with changes in electrical resistance correlated with mechanical strain. The unique electrical properties of ECC render them a smart material capable of measuring strain and the evolu...

متن کامل

Experimental Investigation of the Piezoresistive Properties of Cement Composites with Hybrid Carbon Fibers and Nanotubes

Cement-based sensors with hybrid conductive fillers using both carbon fibers (CFs) and multi-walled carbon nanotubes (MWCNTs) were experimentally investigated in this study. The self-sensing capacities of cement-based composites with only CFs or MWCNTs were found based on preliminary tests. The results showed that the percolation thresholds of CFs and MWCNTs were 0.5-1.0 vol.% and 1.0 vol.%, re...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002